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SUMMARY

A numerical scheme is outlined for the calculation of two dimensional time-linearised
transonic flow about an aerofoil or collection of components, using the Green's function
method. Computed results are presented for various configurations for the simpler sub-
problem of steady subsonic flow.
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1. INTRODUCTION

This article presents an outline of a numerical scheme for calculating two-
dimensional unsteady transonic flow about an aerofoil, or a collection of aerofoil
components. The aerofoil components are assumed to be thin, and the effects
of viscosity are neglected. Hence, the flow is assumed to be governed by the
transonic small disturbance equation [1], [7].

The approach followed here is the Green's function (integral equation) method.
This method, see [8-10] and also [2], was first introduced to compute unsteady
subsonic aerodynamics in three dimensions. However, the method was ex-
tended in [14] to also handle transonic aerodynamics (see also [3]). The main
advantage of the method is that it is easy to implement for complex geometries,
since body-fitting grid systems are not required [5),415].

In [14] and [3], the Green's function method involves "time-integration". That
is, the flow about the aerofoil is calculated at each moment as the program
steps forward in time. Alternatively, significant savings in computer time can
be made by "time-linearising", i.e. by assuming that the aerofoil oscillates
harmonically about some mean steady position ([5], [8], [9], and [11]).

The cost of "time-linearisation" is an inability to model highly non-linear phe-
nomena such as shock appearance and disappearance, and large scale shock
motion, such as that identified in [13]. However, the method is compatible
with conventional subsonic (linear) flutter analysis, and significantly easier to
program than "time-integration" methods.

As a first step towards a full "time-linearised" transonic capability, results are
presented here for a simple sub-problem of two-dimensional unsteady transonic
flow, namely the problem of two-dimensional steady subsonic flow. This pre-
liminary problem, for which analytical solutions are available, provides a useful
initial check on the method's accuracy and a pointer to possible problems in
the full transonic formulation.

2. TRANSONIC PROBLEM

Under the assumptions that the fluid is isentropic and inviscid, the flow is
irrotational and the aerofoil is thin and undergoes small unsteady motion,
there exists a perturbation potential € which must satisfy the unsteady small
perturbation transonic equation [1], [7], namely

[(1 - M 2 ) - M 2 (1 + y)4z]¢z + 0,, - 2M 24't - M 24tt = 0. (1)

where -y is the ratio of specific heats and the x-axis is in the streamwise direc-
tion. The Mach number M is assumed to be near, but less than unity, meaning
that only "sub"-transonic flow will be considered here.

In order to reduce the computational time and complexity of the formulation,
the governing equation is "time-linearised" as in [5] and [11]. That is, the
potential is separated into a steady part and a small harmonically oscillating
unsteady part. This leads to a non-linear boundary value problem for the



steady potential and a linear boundary value problem for unsteady potential
(which is linked to the steady problem).

Equation (1) is "time-linearised" by setting 6 = 0, + Ou, where 4u < 0,
and keeping only the higher order terms. Accordingly, the steady potenual 0,
must satisfy

(1 - M2 )Os.." + 0.yy = M 2 (1 + "Y)Osxosxz (2)

which can be rewritten the Prandtl-Glauert transformation X = x,
Y = Oy (setting 13 = v/l- M), as

OsXX + sYY S = as, (3)

where the non-linear term a, is given by

a M(1 - sxesxx. (4)

18 l-M 2

The unsteady potential eu must then satisfy the linear equation

(1 - M 2 )urx + Ouyy - 2M 2 0urt - M20ut = M 2 (1 + _Y)[uz sr. (5)

Application of the above Prandtl-Glauert transformation, plus the further sub-
stitution (assuming harmonic time dependence) of

u = tue ik (t+ M 1X /,2)  (6)

into (5) leads to an equation for the new dependent variable 41$u, namely

buXX + Duyy + h2 u = au, (7)

where h = kM/1 and the au term on the right hand side (which is linear but
dependent on the steady potential) is given by

M 2 (1 + 7)a f0 ue'2X/ (8)au= -_- _M2  X[X ('9-X /U)].

It is not strictly necessary to use equations (3) and (4) to calculate the under-
lying steady flow field. An alternative, see [4] and [5] and elsewhere, is to use
the steady solution from a much simpler formulation than the transonic small
perturbation equation, thus making computer time savings.

Conversely, the steady flow field could be generated by a more complicated
equation such as the full potential equation. The advantage of this approach
over the use of the small disturbance equation is that shock strength and
position are modelled more realistically.

An attractive feature of using the full-potential equation for the steady flow
field is that this equation can be solved with relatively little extra cost over the
small disturbance equation. Solving the steady full potential equation simply
means using a different non-linear term as, as in [15].
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The method of solution of both the steady and unsteady problems is based on
the Morino integral equation method [8], in which Green's Formula is used to
construct an integral equation for the velocity potential €, where 0 represents
p, in the steady case, and Du in the unsteady case.

Green's formula for both the steady and unsteady equations relates the poten-
tial kp at a point P in the flow domain to an integral of the potential over the
aerofoil boundary CS, the wake contour CW, any shock discontinuities CD,
and the contour at infinity Co,. It has the form

= -_O) + dS (9)

where C = CSUCWUCDUCoo (as shown in Figure 1), N is the inward normal

to the fluid in the Prandtl-Glauert space, and o represents either ar or a.

The domain function E is defined by

1, p within flow field
E = , p on the boundary (10)

0, Op outside flow field.

For the steady problem

G - log R (11)
27r

(where R is the distance to the singularity) is an appropriate Green's function,
while for the unsteady problem

1 .(2)
G = 4 iH 0 )(hR) (12)

(where H(2) is the Hankel function of the second kind of order zero) is an
appropriate Green's function.

Using the far-field expansions in [1] and [6], and the Green's functions above,
it can be shown that at infinity the contribution to the righthand side of (9)
is at most a constant. Hence, the boundary integral over Co. may be omitted.
Also, the integral over the shock discontinuity CD can be combined with the
volume integral in such a way that there is no explicit contribution to Op (as a
result of the shock jump conditions) [6], [14]. Since the new integral equation
generated this way can be shown to differ very little from the original integral
equation "at the numerical algorithm level" [14] when discretised, the original
equation can be used ignoring altogether the presence of shocks, which are said
to be "captured". As in [12], artificial viscosity can be used when evaluating
the field integrals to guarantee the absence of (i.e. smooth out) shock waves.

A primary advantage of the integral equation approach is that no complex,
body-fitting grid generation scheme is needed within the flow field (such as
would be required in a finite difference method). Most of the effort in grid
generation is needed at the aerofoil boundary, which is approximated by small
elements (line segments in 2D).
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Although the flow field F must still be discretised in order to evaluate the
righthand side of equation (9), a cartesian grid (consisting of rectangular pan-
els) is sufficient for this purpose, and this grid need not be fitted to the shape
of the aerofoil contours. In fact, this grid need only be generated where the
transonic terms a, and a, are significant, i.e. near the aerofoil (see [51,[15]).
Also, both the steady and unsteady calculations can take place on the same
grid.

3. PROPOSED NUMERICAL SCHEME - AN OUTLINE

The numerical scheme proposed here involves the two stages described above,
namely, initial calculation of the steady flow field, followed by calculation of
the unsteady fiow field. Each stage uses the same grid, but with differing
Green's functions and a terms. The calculation scheme for each stage is the
same and proceeds as follows:

Step 0 Evaluate 0 = OC on the aerofoil contour using a normal (subsonic)
panel method, that is, setting the field source strength a to zero. The aerofoil
surface is divided into panels and the unknown 'C is approximated in some
fashion, e.g. as being constant on each panel. The known quantity a. is also
approximated in some consistent fashion. The equation for OC,

EC= (G - _C -) (13)

where C = CS U Cg- becomes a matrix equation for the discrete OC values.

Step 1 Evaluate ' = OF in the flow field F using the values of OC calculated
at the previous step, and the current value of a. The flow field is discretised
into panels on which, for example, OF is constant. The discrete version of

EOF = ( - -") W+ J GadS (14)

yields F at each field panel.

Step 2 Evaluate the field source strength a by applying finite differences to
formulas (4) or (8). The expression for a is non-linear for the steady problem,
while for the unsteady problem it is linear but depends on the calculated steady
solution.

Exit iteration loop if field source strengths have converged.

Step 3 Evaluate 4 = OC on the aerofoil boundary using the transonic panel
method (with field source term). This step echoes Step 0 and involves solution
of the linear matrix equation arising from discretisation of

EC = G(2- - COG )df + Ga dS (15)

Go to Step 1

4



Stability and convergence have not been discussed here and are not guaranteed.
However. in [15] encouraging results are given for the convergence of a similar
natural iteration scheme. For subcritical (shock-free) flu _ covergence to
acceptable accuracy occurs within 5 iterations, while for supercritical flows
(with shocks) convergence occurs within 30 iterations.

4. SUBSONIC PROBLEM

The subsonic problem is a subset of the transonic problem, corresponding to
Step 0 above, in which the field source strength is zero and the steady Green's
function (11) is used. This problem is considered first in order to identify
areas of possible difficulty in the panelling and/or evaluation of the influence
coefficients, and to provide the programming framework for later extensions to
steady transonic flow (involving non-linear terms and iteration) and unsteady
flow (more complicated Green's function).

The appropriate boundary value problem for the steady potential 0 is to satisfy
equation (2) with associated boundary conditions

- i i n. (6

on the aerofoil boundary. As seen already, the Prandtl-Glauert transformation
puts the tran~cnic small perturbation eq,.ation into the form given in equations
(3) and (4), while the boundary conditions (16) become

80r i.N
_N - N (17)

Note that N is the normal to the aerofoil in the transformed flow domain.
and that higher order terms have been neglected here, consistent with the
linearisation of the governing equation.

The integral equation (13) for 0, obtained by application of Green's formula,
is solved by the method of collocation. The aerofoil contour C S is assumed to
consist of Nt discrete panels Pj whose end points are (xj-1, yj-1) and (xj, yj),
with equation

x = ajy + b. (18)

(In [2] the wing surface is fitted exactly and the boundary integrals are carried
out numerically, whereas in the Morino method an approximate geometry is
used and the integrals are usually calculated analytically, especially near singu-
larities.) The collocation points (ai, 7/i) are taken to be the Nt panel midpoints,
with associated values of the potential €i = 0( i, 7i).

At the ith collocation point we have

7roi =JlgR - log R) & - (lgR)d (19)

where Ri = -,/(z - Ci)2 + (y - 170).



Assuming o is constant oi each panel. and treating the ,Nake boundary as a
straight line emanating from the trailing edge across which there is no pressure
jump. we have

7ro J logRi -_i d(

-- Z j J~jp (logRi)d[ (20,

-Aote 5(logRi)d

for i= 1.2 .... Nt, where pte is the value of o at the trailing edge. This leads
to

o7rO= J TlogRidy

- oil- Xp dy+I 1 ] (21)

_AttF e - 7 dr.-- Xtte R i  dx

for i = 1.2 ..... N't, where (xtc, Yte) are the coordinates of the trailing edge.
and -t, is the panel number of the (upper) trailing edge panel. Evaluating
the integrals we have. finally

Nt Nt Nt+1
7tPi =Z Bzj - Z Aij j - 1: Tijpj (22)

j=1 j=1 j=Nte

for i = 1.2.. , where

B =3  1 (y - +(Y +aj(x - si))(log Ri - 1)
-t, + 1+0 aj1-{)]y

+ (ajri + bj - l (arctan( a-i + ij - i

_y - 7li + aj~x - i) -U.,jI acta( 17zj(xz)( fora,#o
Aij P rcx -iajrihx + bj - i fo aj - o (24)

[arctan( X ' )]' for aj = oc,
I yj - 77i xi-_

and

Wij = r lim arctan( X ) - arctan( -_i)] ('te+1 (25)
"0 Yte -li We " j Ntel

The above set of simultaneous equations is now solved for the unknowns Cj.

In the unsteady cas, the Green's function is so complicated that the influence
co, ificients can only be evaluated numerically. Numerical experiments have



determined that for the steady problem a four point Gaussian rule is sufficiently
accurate for use in evaluation of the influence coefficients, except near the
collocation point where it becomes necessary to extract the singularity and
evaluate that part separately (analytically).

For interfering aerofoils/components the wake terms t1ij need very careful
treatment, especially when the idealised (i.e. straight) wake of one aerofoil
component intersects with another component downstream. An interpretation
used successfully here is that the arctan terms in WT'j represent the angles 3
and ca respectively, shown in Figure 2. These angles change continuously as
the point (ii. 7i) crosses the wakt- (even though the arctan function jumps).
As a result. ±27r must be added to TV]j where necessary to retain continuity.

Onre the potential has been obtained, an obvious method for calculating the
pressure coefficient would be to differentiate equation (22) with respect to i
and rTi and use these derivatives in all calculation-. This works quite well within
the flow field (provided the factor of 7r is replaced by 27r in (22)). However, it
also leads to large errors near the aerofoil because of the assumption that the
potential varies as a step functir-i. The function given by the right hand side
of equation (22) becomes almos. step-like between collocation points, causing
the calculated derivatives to be useless near these points, i.e on the aerofoil
boundary.

Since direct calculation is impossible, an alternative is *o calculate derivatives
by finite differences. This is done using the collocation points, at which 6 is
known best.

Returning to the original unsealed co-ordinates, the pressure coefficient CP is
calculated from the following formula, applicable to thin geometries:

Cp = -2[i. q+ q.- q] + 1(i "2 q)2 (26)

where q = Vo i the perturbation velocity. On the aerofoil boundary we write

q = qs + qnn (27)
where s and n are the tangential and normal vectors respectively. The pressure
coefficient can thus be rewritten as

Cp = -2[qs(i. s) + (q - q2)
(28)

--. A1(q 2 (i. s)2 - 2qsq2(i s) + q; (,

which has the advantage that the magnitude of the normal velocity component
q= = -i.n is known exactly from the boundary conditions, while the magnitude
of the tangential velocity qs is easily approximated by finite differences at
the boundary. Thus finally, the following formula applies for the pressure
coefficient at the ith collocation point:

2=~ -2 ~(A 2 + (Ai 1 )2 (29)

+ M 2 [(AO)2(A )2 - 2Aj~(A7) + A74

+7L +
I7



where
- e (30)

Ai= - li-1 (31)

and
- (32)

5. RESULTS AND DISCUSSION

Results have been computed for the case Al1 = 0 for three test configurations,

namely

1. A circle with unit radius centered at the origin.

2. A NACA0012 aerofoil at zero angle of attack.

3. Williams configuration B [16] (aerofoil plus flap at 10 deg).

Figures 3 to 5 are plots of -Cp vs chordwise position for these three configura-
tions. The exact incompressible solutions are denoted by lines and numerical

solutions are denoted by asterisks.

The agreement in all case is excellent. The agreement at the trailing edges in
configuration 3 (Figure 5) is surprisingly good in view of the assumption that
each wake is a straight line emanating from the trailing edge.

6. CONCLUSION

In this article the outline of a numerical scheme for the calculation of two-
dimensional unsteady transonic aerodynamics has been presented. Excellent
results have been obtained for the first step towards implementing this scheme,
that is, for the special case of steady subsonic aerodynamics.

Despite the apparent simplicity of the outlined scheme, implementation for
unsteady and transonic aerodynamics will still involve significant leaps in diffi-
culty. For unsteady flow, a more complicated Green's function will mean that

the integrals involved can no longer be evaluated in closed form. Difficulties
are also anticipated in the application of the Kutta condition at the trailing
edge. For tranconic flow the addition of field source terms, and the consequent

neei for an iterative numerical scheme, will lead to demands on computer time
and storage. Problems with stability and convergence of the numerical scheme

are also a possibility.
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FIGURES

Figure 1. Flow domain showing important contours.

Figure 2. Diagram showing angles between the trailing edge, the wake and collocation point.
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Figure 3. -Cp vs X for flow around a circular cylinder - Comparison of numerical
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